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Summary:

Consider an array X=(X

i,3&N) of random variables, and let’

ij’
U=(U§3) and V=(Vij) be orthogonal transformations, affecting only
finitely maﬂy coordinates. Say that X is separately rotatable 1f

UXV? g X for arbitrary U and V, and jointly rotatable if this holds

with U=V. Restricting U and V to the class of permutations, we

get instead the property of separate or joint exchangeability.

vt o

Processes on Ri, R*x[o,;] or [0,1]° are said to be separately or

P el

jointly exchangeable, if the arrays of increments over arbitrary

1

square grids have these properties. For some of the above cases,

explicit representations have been obtained by Aldous (1981) and

I3

Hoover (1979). The aim of theQPresent paper is to continue the

PSS ANy

work of these authors by deriving some new representations, and by

solving the associated uniqueness and continuity problems.
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l. Introduction

Consider an infini.e two-dimensional array of random variables

X=(X i,jeN) . We shall say that X is separately (or row-column)

ij’
exchangeable, if its distribution is invariant under permutations

of both rows and columns, i.e. if (Xi*) d (X ) for all permutations
4

p.d.
173
(pi) and (qj) of N. If this condition holds with the same permutaticn

) d (X ) for all (pi), we shall

i] P;P.
1°)
say instead that X is jointly (or weakly) exchangeable. In the

Pl AL S ]

for rows and columns, i.e. if (X

above definitions, it is clearly enough to consider permutations

(pi) such that pi=i for all but finitely many 1i.

NN

Aldous (1981) and Hoover (1979) proved independently that an

AT

array as above is separately exchangeable iff it is distributed as

X5 = O0GE M A ), i3eN, (1)

WA Y Y

for some measurable function f: [0,1]4—+-R, where the guantities

5

4

& and 51'7j'” i,jéN, are i.i.d. random variables, uniformly

ij’

.o
»

distributed on [O,l] (U(0,1) for short). Hoover also showed that

YR Y
2 "

an array 1is jointly exchangeable iff it is distributed as

xij = f(u,Ei,gj,)«ij), i,jeN, (2)

AT

for some function f as above, where d,El,EZ,... and Aij’ i<j, are
i.i.d. t(0,1), while Aii=0 and Aij=Aji for all i and j. Aldous 3
gives the same result without proof, in the special case of

symmetric arrays (where Xij=X and hence f(-,x,y,-)=f(-,y,%x,°)).

ji
Since the representation in (2) will play a basic role in this
3 paper, we give a short proof in Section 3 below, employing the D

) techniques of Aldous. (Hoover's as yet unpublished procof uses ideas

VI

from logic and non-standard analysis, and may be difficult to read N
for probabilists.) Note, incidentally, that representation (1)

follows immediately from (2), since the two representations are -

equivalent for (i,j)€(2N)x(2N-1). This observation will often be L2

A e
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useful in the seguel.

Aldous, in his brilliant 1981 paper, goes on to prove a

|
;
o
]
'
]
)

conjecture of Dawid (1978), giving the general form of a separately

rotatable (or spherical) array. By this we mean an array X as above,

such that UXVT g X for all linear operators U and V on R® which

rotate finitely many coordinates while leaving the others invariant.
Transformatiocns of this type will be called rotations, and for these
the matrix notation above will coften be convenient. The general

representation theorem states that an array is separately rotatable

iff it is distributed as

13
. . 2
for some random variables o and O‘l’a?' ... with qu<ao, where the

quantltles Aij' €ik and ’hk are i.i.d. N{(0,1) and indevendent of

i
00
X.. = GAij + Z"‘ksik"ljk' i,jeN, (3)
k=1
o and (ak). In fact, the general array is known to be a mixture
(in the distributional sense) of dissociated ones, where (Xij’
iajgn) and (Xij’ ivj>n) are independent for each n, so Aldous
restricts his attention to the latter and obtains a representation
(3) with censtant coefficients. He also needs a moment condition for
his proof. Given Aldous' work, it is not hard to supply the additional
arguments needed for the general version, which is done in Section 4
below. Even this result will play a key role in subsequent sections.
In Section 5, the characterizations in (2) and (3) will
be combined with some methods from Aldous'paper to yield a
corresponding representation in the jointly rotatable case, where

1t is assumed that UXUT d X for all rotations U. For the special

case of symmetric arrays, our representation becomes

& N

- - co RS

X454 ?513. YRS WO }_f‘k‘giksjk 5.5, i, (4) e

k= 2,

where J, . denotes the Kronecker delta. while the A,. and £,  are A
1] ij ik b

i.i.d. N(0,1) as before, and o, ¢ and «d,°5,... are arbitrary random e




variables independent of the /\ij and €ik and satisfying Za§< oo,

Dawid (1978) discusses the further restricted case when the finite

s e 40 B aLg

subarrays are non-negative definite. In this case (4) simplifies to

[* -]
Xy = ?égj + Eé;*kzikgjk’ i,jeN, (5)

PLLEELS

with non-negative ? and o(l,o(.z,... satisfyinag zo(k< pa, as conjectured

.

by Dawid. In fact, Dawid proves that the representation (5) is

equivalent to (3) above, and so his conjecture was essentially

rov s
RO

settled already by Aldous paper.

The last two sections are devoted to exchangeable and continuous

3 random processes X in the plane, as introduced in Aldous (1985).

O

Here the definition of exchangeability is stated in terms of the

t

increments of X over finite rectangles I, given by

: X(I) = X(b:d)'X(&,d)"X(b,C)*’X(a,C)

# . when‘I=(a,b)x(c,d). e shall say that a process X on Ri, R+x[0,l],

Lay % -' :' ‘-.

T_O,l]xR+ or EO,I]Z is separately exchangeable, if the array of

o f 1T‘

increments of X with respect to an arbitrary rectangular grid has

S

this property. The definition of jointlyv exchangeable processes

{UAA

2 2 . .. ,
on R, or [p,1]° is similar, except that we have to consider square

grids emanating from the origin. For definiteness, we shall assume

RS

in both cases that X(s,0)=X(0,t)=0.

>

In Section 6 we show that a process on Ri is separately

exchangeable and continuous iff it is distributed as

L v« 1 " v
',/1-_...

= +
Xst ?st dAs

S . . B . sC.. , 6
. j}z_l (ochj(s)C](t)+{33BJ(s)t+a’Jst(t)) (6)

. . 2
for some random variables P' o and “j'ﬂj'xj’ j€N, with Z(.xj+/3§+6§)

< so. Here A denotes an independent Brownian sheet, while the Bj

A AR AR

and Cj are mutually independent Brownian motions, which are also R

BT

assumed to be independent of everything else. The same representation

1s valid for processes on R+K[0,l] or [0,1]2, but now with the .




Bj and Cj interpreted as Brownian bridges in appropriate cases,

and with the Brownian sheet A accordingly tied down. Our proof of
(6) devends on the simple observation that exchangeability is
eguivalent to rotatability for continucus and suitably tied-down
processes on R_. By this coincidence, the representations of
rotatable arravs derived in previous sections become the basic
tnols to analyze exchangeable processes in higher dimensions.

In the final Section 7, we characterize jointly exchangeable
processes on Ri. For the special case of symmetric processes, our
rerresentation formula becomes

Xst = ?st + W(sat) + U(Ast+Ats)

(7)

M3

+ {o¢. (B. (s)B.
3 11 373 j

where ?,‘J, o and the 0%, pj and Kﬁ are arbitrary random variables

(£)-sat) + [, (sBy (t) +tB, (s))+ ¥, (sat)},

satisfying 'E}¢§+P§+‘§)<Oo a.s., while A is an independent Brownian
sheet and the Bj are independent Brownian motions, as before. This
may be compared with Conjecture 15.20 in Aldous (1985), where it is
suggested that instead

oo
- B. L (t) . 8
Xop ?st + A3 (SAt) + OA(sat,swvt) + j§:_lc=<jxaj(s)133(t) (8)

Note that the centering of the product terms Bj(s)Bj(t) is
necessary for convergence in general. The missing components
Zﬁstj(t) and ijtBj(s) represent centered drift terms in the
horizontal and vertical directions reprectively, themselves
exchangeable, while 1¥(sat)+ f_b'ij(SAt) represents an exchangeable
process along the diagonal.

We conjecture that (7) and the more general non-symmetric

version below remain valid for jointly exchanceable processes on

[0,1]2, with A and the Bj tied down as before. We might also mention

the open problem of characterizing jointly spreadable arrays
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and processes, where spreadability is defined as in [14].

Once a characterization problem has been solved, the next step
becomes to examine the associated problems of unigqueness and
continuity. Here the former is to identify the equivalence classes
of representations giving rise to the same distribution, while the
latter problem consists in describing the topology in the so defined
representation space that corresponds to weak convergence for
the distributions of X. This program will be carried out below for
the representations in (3), (4), (6) and (7). (Note that the
uniqueness problem for the representations in (1) and (2) has
already been solved by Hoover (1979).) We shall use the approach
from the univariate discussion in ([12]. Thus for each case we shall

introduce a suitable set of directing random elements, F say, to

be given as functions of the coefficients in the representation
formula, such that convergence in distribution of ? and X will be
equivalent.

Our discussion of the main problems, as stated above, will be
preceded by some general prerequisites in Section 2. Here we shall
present some results based on the powerful section theorem (cf.
Dellacherie and Meyer (1975)), which will provide the technical
tools to extend a representation from the dissociated to the general
case. Likewise, they will yield without effort the X-measurability
of the directing random elements directly from their uniqueness in

the dissociated case. Throughout the paper, we shall further make

frequent use of the simplifying device of randomization, based on

the elementary Lemma 1.1 in [14]. In particular, this will enable
us to proceed directly from an explicit formula for an equivalent
array or process (i.e. some X' d X) to an a.s. representation of

X itself. Section 2 will also contain the required background on

- R . - . i "—..'--\-.\1..‘..".-. S -.'.f—‘-‘;." IR ."‘-" _“' o K ..."." ‘.
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the univariate case, as well as a brief discussion of some processes
related to Brownian motion and sheet.

As for relevant literature, the lecture notes by Aldous (1985)
provide a broad survey of exchangeability theory. The reader is
especially urged to read his Sections 14-15, dealing with the
multivariate case. Several of our arguments below have been

patterned on similar passages in Aldous (1981). On such occations,

XSV ¥V VY W W W W T e Y. Y W W ThEm. oy ,T

we shall often give only a brief outline, so the reader may need
to consult Aldous' paper for details. Other references on the
multivariate case, not mentioned before, are the papers by Dawid

(1977), Hoover (1982) and Lynch (1984).

t an an g S SN

our discussion of weak convergence and tightness for random
arrays and processes presupposes some general theory on the subject,
b as given in Chapters 1-2 of Billingsley (1968). We shall further
need some weak convergence theory for probabilities on measure
} spaces, as provided by Chapter 4 in [13]. The reason for this is that,

typically, one or more of the directing random elements will turn out

| to be random measures on some appropriate space. Finally, we shall
often need to refer to [12], not only for the basic univariate

representations, but also for its elementary randomization Lemma

1.1, which will often yield immediate extensions of our weak

convergence results from the dissociated to the general case.
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2. Breliminaries

In this section, we shall first derive some general measure theoretic
results, which will be useful in proving the main theorems of the
vaper. The first result will be needecd to extend a representation
formula, cbtained under suitable conditioning, to the unconditional
case.

{ Bv an extension of a probability space (f,#,P) will shall mean

a product (o', F',P")=(AxI,FxB,PxAd) with some arbitrary probability
scace (I,B,A), e.g. with the Lebsgue unit interval. Note that random
T elements on f1 extend immediately to {1' with the same distribution.

The procecdure of constructing random elements on some extended

probability space will be called randomization.

Lemma_2.l. Fix a probability space n,#,P), a o-field gc 7,

and three Polish spaces S, T and U. Let §: N — S, q:fl—» U and

f: TxXU— S be measurable mappings, and put mt=P{f(t,q)e-}. Assume

that

Plee- ]Gle {m : teT} a.s. (1)

Then there exists a G-measurable random element T in T and an

indevendent random element vf g‘q on some extension of {1, such that

E=f(T,W’) a.s.

Proof. Let £ and 7 denote the Borel o-fields in S and T
respectively, and conclude by Fubini's theorem that mtB is 7=
measurable for every Bef. Writing p for a version of P[EE'IQJ, it
is further seen that pB is g—measurable for all Bef. Letting By /By,
...€f be measure determining in S, we get

) {(w,t): Pij=mtBj} € GxT.

Note also that the projection of A onJ{) has probability 1, by

o0

A= {(w,t)eIIxT: Fw=mt} = ;3

assurction. By the section theorer (cf. [6]), there exists some

gmreasurable random element T in T. such that pre a.s. Choosing

L R N T T e e e e e e e e N e e

Tt

R R - RS c . ...4_.._-._.1‘._-.'_

A R I T Y S TR A e PN
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by randomization some q“ Q,q independent of T, we get by Fubini's
theorem
rlee-ft]l=p = me= PlE(T.y"e-{T] a.s.,

wnich shows that (£&,T) d (f(T.q"),T). Bv Lermma 1.1 in [14], there

{feN)

exists some random pair (T',n') (t,n") on an extension of fl, such
that E=f(T',7') and T=T' a.s. Thus €=f(t,q') a.s., and moreover 7'

is indevendent of 7, since (T,q') d (r,w"). a

More can be said when the m, are invariant anc ergodic under
a suiltable class of transformations. Here we are using the terminology

of Section 12 in Aldous (1985).

Lemma_2.2. Let the measures my in Lemma 2.1 be invariant and

ergodic under some countable group of measurable transformations

of S. Then the random measure m, is a.s. unigue and §-measurable

and there is even a f—measurable choice of T. Moreover, the

distributions of § and m_ determine each other uniguely.

T
Proof. Let 3% be the o-field of invariant Borel sets in S,
and put‘7=€-lﬂéc-?: From Dynkin (1978) (cf. Theorem 12.10 in [2])
it is known that P[ﬁe-l?] is a.s. ergodic, and that the integral
representation of Ps—l over the ergodic measures is unigue. Hence
the random measures m. and P(£€-|7] have the same distribution.
Since the range of m is analytic, it foilows that P{Ee:r7]e{mt, teT}
a.s. Thus Lemma 2.1 applies with G=7J, so there exists some 7-
measurable random element T' in T satisfying
r{Ee |7] = m., a.s. (2)
Let us now return to the relation
m_= P[§€-|G] = plge [T]. (3)
Here the left-hand side is a.s. ergodic, so

plrjt] € {0,1} a.s., 1e7,

and 1t follows easily that




1 = {p[1jT]=1} € o(®) a.s., Te 7.
This shows that Jc 6(T). We now obtain from (2) and (3)

m_, = p[¢e-|T7] = E[p[ge |T]|T] = E[m_|T] a.s.

Letting B be an arbitrary Bore® set in S, we get
- o _ 2 _ 2
EmE m,B=EmnBFmP|7] = E(E[mB|T])" = [(m_,B)",
- d
and since mf, = m.
E(mB - m_,B)% = E(m.B)% - E(m_,B)2 = 0
(m B o r My .

as above, it follows that

This shows that m=m a.s., SO mg is a.s. unigue and J-measurable.

‘rl

It follows in particular that ngl determines Pm;}. The converse

is also true, since PE-1=Emr.

In the apprlications we have in mind, T is the array of

coefficients in the representation formula for X, and mt is the

distribution of ¥ when T=t is fixed. Now suppose that f is a

measurable maprping from T to some space V, such that my and ft

determine each other uniquely. If the mappings between m, and ft
can be shown to be measurable, a.s. PT-I, then the conclusion of
Lemma 2.2 will remain true with mT.replaced by ?=ﬁt, and ? can

serve as a‘'directing random element for X. The following result

yields the desired measurability when V is Polish.

Lemma_2.3. Let § and n be random elements on some Polish

probability space (), and taking values in the Polish spaces S

and T resvectively. Assume that £=f(7) a.s. for some mapping

f: T—> S. Then f can be chosen to be measurable.

Proof. Recall that the range A={(E,7)(w):uJefl} is analytic
in SxT. Add to £ an entra point 9. By the section theorem (cf. T6])

tnere exists a measurable mapring g: T— Sv[d} with g(q)ES a.s.,

anc¢ such that
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We need to make some further remarks on the application of
the above results. I'irst recall that the separate or joint
exchangeability of a process on a continuous parameter space was
defined in terms of transformations of the associated increment
arrays rather than of the process itself. However, there exists in
each case a countable group G of measurable transformations of the
process, such that exchangeability is equivalent to invariance in
distribution under G.

To see this, let us e.g. consider the case of joint
exchangeability for continuous processes X on Ri, the other cases
being similar. We then define for fixed h>0 the processes

h

¥7s(s,t) = X((ih,ih+s)x(jh,Fh+t)), s, t€(0,h), i,3I€N.

It is easily seen that the joint exchangeability of X carries »nver

to the array Yh=(Y?j). Moreover, there exists some measurable .
. h o h h h h
mapping £, such that X=f (Y ). Writing T_V =(V ) and T X=f (T Y
pping f, p) riting T ( P;P, b h( D )
for finite permutations p of N, it follows that Tgx d X for all p.
h Q Xh, where Xh

Conversely, this property implies that TpX
denotes the array of increments with respect to the h-grid. Thus
4

X is jointly exchangeable iff it is invariant in distribution under

n

the transformations Tg with h=2" ", nEéN, and with p a finite

permutation of N. These transformations clearly form a countable
group.

A second remark concerns the ergodicity of the measures m,

required in Lemma 2.2. In our applications below, the arrays or

N corresponding to m, will have representations with

constant coefficients, and so will be dissociated, when defined on

N2 or Ri. (In case of processes, this means that the associated

processes X

arrays of increments are dissociated.) The desired ergodicity then

follows as in the usual proof of the Hewitt-Savage 0-1 law (cf. [8]).

.l"l ...-,’l'. -.-.-,‘.f--._"-._

0% DA )
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For processes on [O,l]z or R ,x[0,1], the conclusions of the lemma
1 may instead be obtained via the transformations in Lemma 2.7 below. by
We turn to the characterization of continuous and exchangeable

processes on R_ or [O,l]. Pecall that a one-parameter process X is

T

exchangeable, 1if XO=O and if the increments of X over an arbitrary ;
&

set of disjoint intervals of equal length form an exchangeable

r seguence. For continuous processes, it is clearly enough to consider :

intervals with dyadic endpcints. Say that an Rd~valued process B

is a Brownian motion or bridge, 1f the component processes are

independent Brownian motions or bridges respectively in R. The

‘a1 a v &

following result extends the one-dimensional version in [12]. Here

and below, we shall use a self-explanatory matrix notation.

TR R A

and exchangeable, iff a.s.

]

X, =«t + 0B, ter, or [0,1], (4)

. d .
for some random vector « in R”, some random dxd-matrix <, and some

RN

Rd—valued Brownian motion or bridge, respectively, B. Here o¢ and OGT

are a.s. uhigue and X-measurable, and their joint distribution

determines that of X. N

The representation (4) can be established in the same way as
in the one-dimensional case, i.e. via weak convergence as in [12],
or by the martingale argument in [2]. The last statement is an -
easy exercise in the use of Lemmas 2.2 and 2.3 above, given the

fact that, in the two cases,

E exp(ijdeX) = <{

where f is an arbitrary Rd—valued and measurable function with

E exp(id J£-5[)oT£)%),

E exp(i«ij-%fch(f—f)lz), "y

.

}f/ELlﬁLv. (It is of course enough to consider simple step functions

ORI
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-2 of this type.) Alternatively, we may obtain &« and oo directly as
- o = lim t™1x, or «=x,, oot = [x,X] a.s.,
. t 1 1
. t-»o0
where [X,X] denotes the dxd-matrix of mixed quadratic variations
Y
2
ﬁ for the components of X.
5

Using characteristic functions as in Theorem 5.3 of [12], we

may easily deduce the uniqueness of extensions (which incidentally

7.

s

remains true in the presence of jumps):

.. process on R, or [0,1], and let Y denote the restriction of X to

some subinterval [0,€] with €>0. Then PY-l determines Px-l.

We shall also need the following multi~dimensional version of
Schoenberc's theorem (cf. [2,5]). Say that an r®-valued random
seguence X=(Xij, igd, JeN) is rotatable, if XU d X for every rotation
U. For a process X on R+ or [O,IJ to be rotatable, we require that
X be continuous in probability, and that the above property should
hold for the increments over an arbitraryv set of disjoint intervals

of equal length.

Lemma_2.6. An Rd—valued random sequence X=(Xij' i<d, je€N) is

rotatable iff a.s.

d

i5 < ;Elcikskj' i=1,...,d, jeN, (5)

for some random dxd-matrix dt(di

K and some i.i.d. N(0,1l) random

variables Eyj' ke¢d, jeN. Similarly, an Rd-zglued random process X

on R_or [0,1] is rotatable iff

AT L L Ll

X, = 0B, a.s., te€r or [0,1], (6)

for some random rmatrix o as above and some d-dimensional Brownian

m
motion B. In both cases, 00" 1is a.s. unique and X-measurable, andgd

its distribution determines that of X.
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We conclude this section with an elementary discussion of some :}
nt
processes related to Brownian motion. First recall that a Brownian N
- “
sheet is a centered Gaussian process X on Ri with covariance function <,
2= X
¢
F
F XStXS.t, = (SAS')(tAt')I S,S',t,t'€R+. .".:
Starting from X, we may construct the further processes 2{
Yoo = Xgp - sXy se[0,1], ter_, &
Zop = Xgp~tX q-sX +stX ) = Y_ -t¥ ., s,te[0,1], :-_:-_:_
with covariance functions =
E YstYs't' (sas'=ss') (tat'), s,s'GEO,L], t,t'eR+, >
E 2o Zgrp (sAs'-ss') (tAt'-tt'), s,s',t,t'ef0,1].
All these processes will be referred to as Brownian sails. (The :
process Y above is also known as the Kiefer process.) ;
Iy
In the next result, we list some simple relationships -i}
which will be needed below. For their proofs, it suffices to compute ;i
L
the covariances. -
.:~
Lemma_2.7. Starting from a Brownian motion W and a Brownian }:
..N
sheet X, we may construct a Brownian bridge B and Brownian sails ?ﬁ
Y and Z thyxough the formulas ;L
s o
B(s) = (l-s)W(;=2), sef0,1], I
>0
S
Y(slt) = (l_s)x<ﬁlt)l S€[0,l], teR+, :.-.'
t S t 2 -
Z(s,t) = (1-t)¥(s,y¢) = (1-8) (1-8)X(y=g/7-¢)» s.te[0,1]°. N
Conversely, W and X may be obtained from B, Y and Z through I{f
- s N
W(s) - (l+s)B(l+s)l s€R+I N
- S _ S t -
X(s,t) = (l+s)Y(I;§,t) = (1+S)(l+t)z(TI§’T:E)’ S,t€R . "
e
\'.
We finally state a simple consequence of Lemmas 2.4, 2.6 and e
-
2.7, which will play in important role in Section 6. 3
N
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exchangeable process on [0,1] with xl=0. Then the process

t
Y(t) = (l+t)X(T1€)' t€R .

is rotatable.
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The purpose of this section is to give a proof, in the spirit of
Aldous (1981, 1985), of the representation formula (1.2) (equation

(2} of Fection 1) for jointlv exchangeable arravs of random variables.

Theorem_3.1. An array X=(X i,jeN) of random variables is

SE==E=====szs Do T4 13 ’
Jjointly exchangeable 1iff
= i \ \{
X, 5 f(«,si,ﬁj,kij), i,jeN, (1)
nolds a.s. with Aiiio and A*jizji’ for some reasurable function

£: [0,1]%— 7 and some i.i.d. U(0,1) random variables =, £ ,E,,..

and Xij' i<j.

It is clearly eguivalent to write instead of (1)

f(u,ﬁi,Ej,kij), i<j,

= o( ¥ . ,

le f( lEilE]rAjl); i>7,
q(dlgl)l i=j,

for some measurable functions f: [0,;]4—1 R and g: [0,1] 2+ R,

and some i.i.d. U(0,1) random variables «, Ei and Xij as above.
For the proof, we shall need a couple of simple exercises on

conditionai probabilities, stated here for random variables but

applied below to infinite arrays.

(§,n7) and (§',n') are conditionally independent, given &. Then £ is

conditionally independent of £', given (q,n',C), and also

conditionally independent of q', given (n,§).

o)

Lemma _3.3. Let 51,55,71,72 be random variables with (51,71) =

(€é,72). Then there exists a transition kernel m on R, such that

P[SjEr/7j] = m(vj,-) a.s., j=1,2.

R et
‘1{1..

A

'» s e 'vl 5 'I. 3

P

v -
., ..r n" ‘,"\" i

‘{..‘

LI IR NN

Ty

L P
Pl ‘

[

¥ O

" rr
2, 1

L
ot

2
Yl ls




16

Proof of Theorem 3.1. Define Yij=

(X ), i,jeN, and note that

D S
137751
the joint exchangeability of X carries over to Y=(Yij). By

Kolmogorov's consistency theorem, we may extend Y to a jointly

exchangeable array indexed by Zz. Write A=(Yij, ir3<c0), Bi=(Yij'

3=1,0,-1,~-2,...), 1€Z, and B=(B1,B ).

g
Our first aim is to prove that Bl'BZ"" are conditionally

1.1.d., given A. It is clearly enough to prove this for the

runcated arravs Ei=(Yij, j=1,0,-1,...,-n), for fixed neN. Now

the secuence (B;,Bg,...) is exchangeable over A and hence

concitionally 1i.1i.d. and independent of A, given its directinag

random measure, sc¢ we need only show that the latter is A-measurable.

But this is true since the extended sequence (""B?n—z'E?n~l’
n _n .
Bl'B2"") is exchangeable.

Let us now fix néN, and define Yn=(Yij, i,j=1,...,n) and Ci=

(Yli,...,Yni), isn. It may then be seen as above that the pairs

(Ci’Bi)’ i>n, are conditionally independent and independent of Yn,
+1 1S
conditionally independent of Yn, given (A,B), and further that

given (A,Bl,...,Bn). By Lemma 3.2 it follows that Cn

C is conditionally independent of B, given (A,B B ).

n+1l 177" ""n+l

From the latter statement for n=1 it is seen that le is

conditionallyv independent of B, given (A,B BZ)’ and by the

1’
exchangeability of Y it then follows that, more generally, Yij is
conditionally independent of B, given (A,Bi,Bj), for all distinct
i, JjEN.

On the other hand, it follows by induction from the first
statement above that the rows of Y below the diagonal are
conditionally independent, given (A,B), and in particular that le
is conditionally independent of Y, given (A,B). Again this

generalizes by the exchangeability of Y to arbitrary distinct

indices, so the vij with l<i<j are in fact conditionally independent,

T

p - " N A I
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given (A,B).

As seen above, the conditional distribution of Yij’ agiven (A,B),
is a function of (A,Ei,Bj). From the exchangeability of Y it is
further seen that the array (A,Bi,Bj,Yij) has the same distribution
for all i,3jeN with i#j. Hence there exists by Lemma 3.3 a transition
kernel m, such that a.s. _

p:Yije- A,B! = m(A.Bi,Bj;-), i,j€eN, i#5. (2)

Letting Cl and C2 be arbitrary Rorel sets, it is further seen from

the definiticen of Yij that
= P
p[v, ec,xc,|a,8] = o[v  ec,xc,|a,B] a.s.
SO we get a.s. the symmetry property

m(A,Bi,Bj;C xXC,) = m(A,Bj,Bi;CZKCl). (3)

1772
Replacing m by a suitable average, we may assume that (3) holds
identically.

We may now follow the "coding" argument in Aldous (1961,1985]),
in introducing i.i.d. U(0,1) random variables &« and 51,22,... by
suitable randomization, such that

A = pleh), Bi=q(u,Ei), ieN, a.s. (4)
for some measurable functions p and g. Since Xii is a component
in Bi’ we get in particular

Xii = g(u,Ei) a.s., i€N, (5)
for some measurable function g: [0,L]2—+ R. We may further choose
two measurable functions fl,fzz [0,1]4—+ R, such that

P (a,%,y,0) ,£y(a,%,y,2) "t = m'(a,x,y;-),  a,x,ye[0,1],
for a U(0,1) random variable A, where

m'(a,x,y;+) = m(p(a),qgla,x),qgla,y):-), a,x,vel0,1]. (6)
From (3) it is seen that also

-1

P(f (aIlerk)rf a,Y,X,A)) = m'(a,xf\';')r arXrYEEO,]-]-

2 1(

Now define
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3 fl(a,x,y,z), X<y,
fla,x,y,z) =y f,(a,y,x,2), X>Y,
1 gla,x), X=Y.
Then
’(fl(a,x,y,z),fz(a,x,y,Z)), XY,
(f(a,x.y,2),fla,yv,x,2)) = i
(fz(a,y.X’Z),fl(alY;X,Z)), X>Y'
so vith A as above,
D (a, %,y M, Ela v x,A) " = m'(a,x,y:e),  a,x,v€[0,1], x#y. (7)

Letting Aij’ i<j, be i.i.d. U(0,1) independently oftx,El,gz,...,
and putting Aiiio and Aijixji’ we may easily conclude from formulas
(2) and (4)-(7) and from the conditional independence of Yij’ i<j,
that X has the same distribution as the array

Xij = f(«,Ei,Ej,Aij), i, jEN.
We may finally use Lerma 1.1 in (14] to show that X has an a.s.

recresentation of the same form. 8,




The main purpose of this section is to remove the second moment
condition, imposed by Aldous (1981l), to rrove that separately
rotatable arrays of random variables have the form (1.3), as
coniectured by Dawid (1978). “e shall also solve the associated

unicueness and continuity problems.

Theorer _4.1. An array X=(xij’ i,7€N) of random variables is

separately rotatable, iff a.s.

oo

= i i \
Xij oAij + kzzl«ksikqjk, i,JjE€N, (1)
for some random variables >0 and &;>%,>...>0 with 2—0(12{<ao a.s.

and some independent set of i.i.d. N(0,1) random variables Aij’

gik'qjk’ i,j,keM. llere o and the ﬂ% are a.s. unique and X-reasurable,

and they are a.s. non-randor iff X is dissociated.

Proof. As before, we mav extend X to a separately rotatable
array indexed by 22. Write A=(Xij, ivj<0), and note that X+=(Xij,
1Aj>0) remains separately rotatable under concditioning by A.
Moreover,+it is clear from the proof of Theorem 1.4 in Aldous
(1981) that x* is conditionally dissociated, given A. Finaily, we
shall prove below that E[XiliA]<«: a.s. We may then conclude from
Theorem 4.3 in Aldous (1981) that X has conditionally the form (1)
with constant coefficients, and the unconditional result will
follow by Lemma 2.1 above.

To show that E[XillA]<ao a.s., let us first conclude from

Lemma 2.6 above that Xij=c.€ for some random variables ci:O and

i’ij
sij' where the latter are i.i.d. N(0,1) for fixed i and independent
of g, - Since o& is clearly A-measurable when i<0, and since

4
EE..<eo, it follows that
1]

E[Xij’A] = cﬁE[g‘ing_]qo a.s., 1i<0.

h
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The symmetric argument shows that also
F[X [AJ<oa a.s., i<0. (2)
Let us now fix i=1, and put E % and X ]—U E qj. Fy the
conditional fcrm of Schwarz' inequallty, we get
2
El ( 2 .+ 2 )
M-1 e :

(T Wt

Here the second factor on the right is a.s. finite by (2), while

A

|
1
[
L)
N

E[n]] ]

[aY

“he first one is a.s. finite since

£2 2 ©0 2,
NI G Y S XA
£2,+- .+ s | 0

where x< y means that x=0(y). Thus E[qi]A)<ao a.s., which completes
the proof of the £first assertion.

In order to prove that the coefficients in (1) are a.s. unique
and X-measurable, it suffices by Lemmas 2.2 and 2.3 above to assume
that they are non-random. But in that case it is easily verified that

o0
E exp(itxll) = exp(—%cztz)1T.(l+u§t2)—%, t€R, (3)

j=1
fror which the uniqueness follows by the theory of analytic functions,

or directly by differentiation.

Here we have already used the obvious fact that arrays X with
constant coefficients are dissociated. Pssuming conversely that X
is dissociated, it is seen as in Section 2 that X must be ergodic.
Moreover, the sequence of coefficients is clearly invariant under
serarate rotations of X, and hence measurable with respect to the
invariant o-field for X. Hence the coefficients are a.s. non-random

in this case. D




For every separately rotatable array X as in (1), we shall

define an associated directing random measure p on R+ by

- 2; + 2 “ x , (4)
j=1 b

where 5x denotes the measure with a unit mass at x. Recall that
mnye-m (mn tends weakly to m) for bounded measures m. an¢ m on R,
1£F mnf—a-mf for every bounded continuous function f on R, . Here mf
denotes the integral ffdm. The corresponding notion of convercence
in distribution for a.s. bounded random measures 2 and J on R+ is
dencted by Pnyg'P' It is known that this convergence is ecuivalent
to Pnf g*'Pf for every bounded and continuous function f. Moreover,
a seguence (pn) is known tc be weakly tight, and hence relatively
comzact with respect to the above notion of convergence, iff (FnR+)

is tight and moreover

lim limsup P{Pn(r,w)>e} =0, €>»0. (5)
r-w n—=oo

Analogous results hold for random measures on R and more general
spaces. (For a complete discussion, see Chapter 4 in {13].)

For arrays of random variables, convergence in distribution is
defined wi;h respect to the usual product topology in R*. Here we
shall solve the continuity problem for the representations in (1),

by characterizing convergence in distribution of separately rotatable

arrays in terms of their directing random measures.

ggggggg=gégé Let the arrays Xl’XZ”"

. d . wq .
and directed by PrrPore-- Then Xn—» some X iff pp—" some p, and in

be separately rotatable

that case X is separately rotatable and directed by some F' d P

Proof. If X is separately rotatable and directed by P then

(3) and (4) yield 2 2
log(l+x"t")
E exp(ltXll) = E exp{-%\ > F(dx{}, tER, (6)

X

where the inner integrand on the right is defined by continuity to
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be ecual to t2 at x=0. Assure first that the Fﬂ are non-random with
Pnyﬂ-some n, and note that even u must be of the form (4). From (6)
1t is seen that the one~-dimensional distributions of Xn converge
as n— o, with limits given by (6). This shows in particular that
(Xn) is tight. If Xnéw»x alona some subsequence, then even X will
be separately rotatable and dissociated, so X must be directed by
some non-random measure P'. But then (6) holds for both p and p',
and it follows as before that u'=u. Thus Xnéﬁ-x along the original
sequence, with X directed bv He Py Lemma 1.1 in 212], the conclusion
extends immediately to the case of random directing measures B
such that pnyg-some u.

Assume cecnversely that Xng+ X, and suppose we can show that

(P ) is weakly tight. If Pnﬂg'P along some subsequence, it follows

n
as before that Xng? some X' along the same subsequence, with X'

. Thus X is directed hy some P" d P so the

directed by some g' <
distribution of u is unique. and the convergence Pn!g F heclds along
the original seguence.

To seg that (Pn) is tight, conclude from the subadditivity

of log(l+x) for x>0 that

0 >0 j
02t2+'z log(1+a2t2) > log(l+02t2) + ‘2 log(l+m§t“)
=1 J - 1=]
J 3
2 2 2 2 2
> log (1+t“ (0“4 2 «%)) = log(l+t PR,) -
j=1 J

Using this, we get from (3) for any r,t>0

5

) 2 2 -
E cos (tX E exp(-3loa(l+t“pR )) = F(l+t‘FR+)

11) <
< P{pRrcr} + ‘1+t2r)_5p{PR+>f}
-5

1 - (l—(l+t2r) )P{yR+>r}.
Substituting Xn and Pn for X and u, and letting n-»ee, r—seo and

t— 0 in this order, we obtain

lir limsup p{y R>r} = 0. (7)
I ¥ N->e0 n
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Since un(r,«g>0 implies that unP+>r2, (7) yields in turn

lim limsup P{Pn(r,m)>0} = 0. (8)
Y00 N>

The desired tightness follows from (7) and (8). a

We shall next prove a rather straichtforward extension of

Thecrer 4.1, which will be needed in fec®ion 6.

Lemma_4.3. Let X, Y, Z and T be arrays of random variables

X. ., Y., Zj and T, 1,Jj€N, such that
(UXv, YU, Uz, T) = (X, Y, Z. T) {9)

for all rotations U and V. Then we may write T=9 anéd a.s.

ot < < o
Xij=caij+g§£‘kgiknjk’ Yi=kélﬂk§ik' Zﬁ=k§1vk73k' i,jeN, (10)

for some (X,Y,Z,T)-measurable random variables ?, o and Kk’pk’xk'

keN, with ZW«i+p§+Ji)<sh a.s., and some independent set of i.1i.d.

N(C,1) random variables Aij’iik’qjk’ i,j,keN. If we assume that

c,nl,r130 and &, >x.>...20=%, and that o« =0 implies ﬁk=ik=0 for k>2,

3 k

taen the coefficients in (10) will be a.s. unique, apart from

rotations of the sequence (ﬂk,Fk), k€N, within index sets where the

o(k assume a common value.

Proof. The array (X,Y,Z,T) 1s separately exchangeable, so

by (1.1) it has a representation

(x 25T = £ €, B ), i eN, (11)

fig0 Yyt ij

for some function f and some i.i.d. U(0,1) random variables qui,

74 and‘ﬂij, i,j€N. The proof in [ 1] shows that & may be chosen as

J

a "coding" of A, a stationary extension of (X,Y,Z,T) into the

incex dorain {(i,j): iVjSQ}' Since (9) remains conditionally valid,
given A, 1t suffices bv Lemma 2.1 above to establish the representation
{10) with non-random coefficients, in the case when o¢ is constant.

n that case., (11) reduces to

B
~ .
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lezfl(gi'y.’j"’ij) vi=f2(£i), zj=f3<7j>, i,jeN,

for some rmeasurable functions f,: [O,LJ3~+ E and f,,f: [0,1])— R.
€ince Exil< oo by Theorem 4.1 akove, we may henceforth proceed

as in the proof of Theorer 4.3 in Aldous (1981). Thus we may first

subtract from xij a component UAij, such that the